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ABSTRACT
Motivated by deep learning approaches to classify normal
and neuro-diseased subjects in functional Magnetic Reso-
nance Imaging (fMRI), we propose stacked autoencoder (SAE)
based 2-stage architecture for disease diagnosis. In the pro-
posed architecture, a separate 4-hidden layer autoencoder is
trained in unsupervised manner for feature extraction cor-
responding to every brain region. Thereafter, these trained
autoencoders are used to provide features on class-labeled
input data for training a binary support vector machine
(SVM) based classifier. In order to design a robust clas-
sifier, noisy or inactive gray matter voxels are filtered out
using a proposed covariance based approach. We applied
the proposed methodology on a public dataset, namely, 1000
Functional Connectomes Project Cobre dataset consisting of
fMRI data of normal and Schizophrenia subjects. The pro-
posed architecture is able to classify normal and Schizophre-
nia subjects with 10-fold cross-validation accuracy of 92%
that is better compared to the existing methods used on the
same dataset.
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1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) has emer-

ged as a powerful neuroimaging technique to study human
brain function and dysfunction. It is one of the primary tech-
niques to reveal how brain regions communicate with each
other to accomplish specific tasks. It provides a promis-
ing way to study interaction between spatially remote dis-
tinct brain regions that are engaged simultaneously in a
task. fMRI blood oxygenated level dependent (BOLD) sig-
nal is not random but temporally coherent between spa-
tially remote functionally consistent regions. Functionally
coupled regions together form functional brain networks [3,
6]. Identification of functional activation in fMRI data dur-
ing task or task-free ”resting state” is critical in neuroscience
for pre-surgical planning and neuropsychiatric disease diag-
nosis such as Alzheimers dementia [11], autism [22], and
schizophrenia [20].

A number of methods have been used for disease diag-
nosis or classification into normal and diseased subjects. In

general, low SNR of fMRI data poses challenges in neuropsy-
chiatric disorder diagnostics using this data. To the best of
our knowledge, there is no standard automated fMRI tool
in hospitals that can be used for disease diagnosis. This
has motivated researchers to explore designing such systems
that can aid doctors. For example, researchers have used
stationary functional connectivity (FC) as a biomarker to
classify patients of neurological and psychiatric diseases such
as Alzheimer [10] or Schizophrenia from normal subjects [8]
because FC has been wildly observed to be altered in sev-
eral neuropsychological diseases [11, 16, 14, 15]. While these
studies restricted the analysis to mean representative voxel
time series, others have reported results on large scale net-
works.

In recent years, owing to the increasing success of deep
learning methods in the areas of speech, signal, image, video
and text mining, and recognition, these methods are be-
ing explored in neurodisorder disease diagnosis using struc-
tural MRI (sMRI) or functional MRI (fMRI) data [13, 23,
12]. In [13], deep belief network has been used to clas-
sify Attention Deficit Hyperactivity Disorder (ADHD) using
ADHD200 dataset. However, decision is taken at the brain
region level that is inappropriate because not every region
may participate in a neuro-disorder and abnormality in one
or more regions may not be the marker to classify either. In
fact, this classification should have been done at the subject
level. In [23], a hybrid architecture of DNN and HMM is
used for Mild Cognitive Impairment (MCI) identification.

Recently, classification of Schizophrenia and normal sub-
jects has been done on Cobre dataset [12, 1, 4, 5, 9, 21]. In
[12], deep neural network with multiple hidden layers along
with sparsity constraint is used to classify subjects. This
deep architecture is able to achieve 85.8% accuracy. How-
ever, mean time series of all voxels of a region has been
considered as input data for classification. This is a limi-
tation because all voxels of a region may not be active at
any time, hence, averaging across a whole region may sup-
press the signal of interest. At the same time, noise signal
due to aliased components of undesired signals such as heart
rhythm or breathing rhythms may get bolstered via averag-
ing and may lead to spurious correlation values across re-
gions. Moreover, in [12], functional connectivity matrix is
computed using the Pearson correlation coefficient. Pearson
correlation is computed via neglecting the effect of other re-
gions. Hence, there may be a case when one region drives



two other regions, providing spurious correlation also called
as triangular functional network.

In [9], resting-state data of 69 Schizophrenia and 72 healthy
subjects has been acquired and correlation matrix is com-
puted. An accuracy of 71.63% has been reported. This
method also uses mean region representative time series and
correlation metric that have limitations as noted above.

In [5], single layer feed forward network is used to extract
features from correlation based functional connectivity ma-
trix. 90% accuracy has been reported on Cobre dataset with
10 fold cross validation. In [4, 21], graph theoretic measures
have been used as features to classify Schizophrenia and nor-
mal subjects. 80% accuracy has been reported on their own
dataset. In [1], first whole brain is parcellated using in-
dependent component analysis (ICA). Next, various graph
theoretic measures are computed to classify with 65% ac-
curacy on the Cobre dataset. In [21], Amplitude of Low
Frequency Fluctuations (ALFF), fractional Amplitude of
Low Frequency Fluctuations (fALFF), Voxel-Mirrored Ho-
motopic Connectivity (VMHC), and Regional Homogeneity
(ReHo) are used as graph theoretic measures and average
accuracy of 80% has been reported on the Cobre dataset.

In this paper, we propose a deep learning based architec-
ture for the classification of normal and Schizophrenia sub-
jects on publicly available Cobre dataset [18]. This paper
has the following salient contributions:

1. We propose covariance based approach to filter out in-
active gray matter voxels from the fMRI dataset before
the data is fed to the first stage of the classifier.

2. We build a 2-stage classifier wherein the first stage is
an autoencoder with 4 hidden layers in the encoder
that is separately trained in unsupervised manner on
every brain region (116 regions) without class-labeled
input data. Encoder output is a 8-length feature vec-
tor for every region. Mean and standard deviation of
every feature corresponding to all voxels of an indi-
vidual brain region are used as representative regional
feature vector. Feature vectors of all regions are ap-
plied to an SVM classifier with class-labeled data for
the training purpose and later used for classification.

3. Instead of using the mean time series of all voxels of a
region or the temporal mean of a voxel [23, 12, 1, 4, 5,
9, 21], we have used complete time series of all active
voxels as input to SAEs. Thus, there is no information
loss at the input end.

The rest of this paper is organized as follows. Section 2
presents briefly the theory of deep autoencoder and SVM
classifier. Data description and pre-processing is described
in Section 3. The proposed classifier methodology is pre-
sented in Section 4. In Section 4, we present results on 1000
Functional Connectome Cobre dataset. Finally, some con-
cluding remarks are presented in Section 5.

2. BACKGROUND
Autoencoder (AE) [2, 19] is an unsupervised neural net-

work that is composed of an encoder and a decoder with
backpropagation algorithm to match the input and the out-
put. A multiple hidden-layer autoencoder architecture is
also called stacked autoencoder (SAE). The goal of autoen-
coder is to find representative features from the input data

such that the data can be reconstructed from this feature
vector. Hence, instead of searching for statistically signifi-
cant features, one may use the output of encoder part of an
AE as the feature vector. In the application of classification,
this feature vector is used in a traditional classifier such as
SVM, artificial neural network, etc. Since autoencoders have
the ability to themselves extract statistically significant fea-
tures, they have been successful in significantly improving
the state-of-the-art classification accuracy.

Support Vector Machine (SVM) is a supervised learning
based classifier [24, 7]. SVMs map the input feature data
to higher dimensional feature space through some chosen
non-linear Kernels such as Gaussian, linear, polynomial etc.
Thus, in general, these classifiers can perform non-linear
classification efficiently.

3. DATA DESCRIPTION AND
PRE-PROCESSING

In this paper, we use the Schizophrenia COBRE dataset
[18] for normal versus diseased classification using the pro-
posed architecture. This dataset is a part of International
Neuroimaging Data-Sharing Initiative under 1000 Functional
Connectomes Project, comprised of fMRI data of 74 healthy
subjects (controls) and 72 subjects of Schizophrenia with
varying ages ranging from 18 to 65 years in both classes.
Data has been collected with a repetition time TR=2s and
echo time TE=29ms. The size of each slice is 64 × 64 with
32 slices in every brain volume, where voxel size is equal to
3 × 3 × 4mm3.

These fMRI data are pre-processed using SPM8 (Statisti-
cal Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm).
First 5 volumes are discarded to allow magnetization to
reach the steady state. Rest 145 functional volumes are
slice time corrected using the middle slice as a reference fol-
lowed by motion correction. Motion correction ensures head
motion below 2 mm or voxel-to-voxel correspondence across
time. Functional scans are spatially normalized onto Mon-
treal Neurological Institute (MNI) space using DARTEL
procedure so that results across subjects can be compared,
resulting in functional images of dimension 53x63x52 (3-mm
isotropic voxels). Further, data is smoothed with a Gaussian
kernel (full width half maximum (FWHM)= 8mm).

The fMRI BOLD signal is active only at gray matter (GM)
voxels. Hence, the normalized fMRI data was masked to
filter out voxels of white matter (WM) and cerebro-spinal
fluid (CSF). Next, we parcellated all gray matter voxels into
116 regions using the automated anatomical atlas (AAL).

4. PROPOSED WORK
In this section, we present the proposed two-stage SAE-

based architecture for the classification of normal versus
Schizophrenia subjects. The proposed strategy is as follows:

• Pre-stage: First, a covariance based strategy is pro-
posed to filter out inactive or noisy GM voxels from
the data.

• Stage-1: An autoencoder with 4-hidden layers in en-
coder and decoder each is trained in unsupervised man-
ner on non-labeled data for every brain region to ex-
tract features.



• Stage-2: Learned features from all pre-trained SAEs
are processed and fed to an SVM classifier that is
trained on a class-labeled data for the binary (normal
versus Schizophrenia subject) classification.

4.1 Pre-stage
Corresponding to any stimulus, either intrinsic or extrin-

sic, all of the gray matter voxels will not be activated at any
particular time. Thus, it is important to filter out voxels
that are inactive or noisy voxels. Although noise time series
may be correlated, its covariance function given in (1) will
exhibit a faster decay compared to the covariance function
of the time-series of active or non-noisy voxels [17].

Ky[l] =
E[(y[n] − µ[n])(y[n− l] − µ[n− l])]

σ2
y

, (1)

where n is the time index, y[n] is the time series of a noisy
voxel, µ[n] is the mean function, σ2

y is the variance of the
time-series y[n], and Ky[l] is the normalized covariance func-
tion of y[n] with l as the lag parameter.

In [17], authors employed K -mean based clustering to sep-
arate noisy and active voxels. The basic idea was that task-
based data will induce periodicity in the covariance function
of the active voxels’ time-series besides having a slow decay.

However, K -means clustering based approach seemed to
filter out some active voxels and leave some noisy voxels in
the resting-state data. Deletion of active voxels from the
useful data can lead to wrong results. Hence, we exploit
the idea of difference in the decay rates of noisy and active
voxels (refer to Fig.1). In order to filter out noisy voxels in
a robust fashion, we propose a simple strategy.

Figure 1: Covariance function of noisy and non-
noisy voxels

We compute the area under the curve exhibited by Ky[l]
from l = −35 to +35. If this area is found to be greater
than 2, we declare the voxel as noisy, else we declare it as
active voxel. This is to note that, in general, hemodynamic
response functions (HRFs) characterizing the system func-
tion at each voxel are found to exhibit a length of 30 to
40 taps. Hence, the correlation induced in the active voxel
owing to system response function being active will roughly

correspond to 40 taps or lags. Thus, we consider a lag of
l = ±35 to compute area under the curve to distinguish
slow decay covariance function from a fast decaying covari-
ance function. Any value between 30 to 50 lags on each side
provided us good results. We visually inspected the filtered
voxels and noted that only noisy voxels got filtered out using
this method.

4.2 Stage-1: Learning features via autoencoder
Figure 2 shows the architecture of stacked autoencoder

(SAE) consisting of 4 hidden layers in the encoder and de-
coder each. Number of nodes in each of the hidden layers,
i.e., h(1), h(2), h(3), h(4) are 200, 50, 100, and 8, respectively
(Figure 2). In this work, we have considered 40 normal and
40 Schizophrenia subject data from the Cobre dataset, al-
though there is no specific biasing in choosing these samples.
Out of these, 10 normal and 10 Schizophrenia subject data
are used for the training purposes and rest of the 30 normal
and 30 Schizophrenia subjects’ data are used for the testing
purposes. In practice, over time, the trained classifier will
be used on more and more test subjects. Hence, in order to
ensure validity for realistic scenarios, we used more data for
testing than training.

Figure 2: Architecture of Stacked Auto Encoder

In order to increase the size of data in the training phase,
we have randomly chosen 50% voxels 30 times from each of
the region for every subject. These provides us a dataset of
300 normal and 300 Schizophrenia subjects for the training
phase.

Since we have 116 brain regions for each subject’s data, we
trained SAE for each region separately in an unsupervised
manner with all 600 subjects’ training data without class
labels. The training parameters used for each of these SAE
are listed in Table-1. Input to each SAE is the time series
(of length 145) of active voxels corresponding to that region.

4.3 Stage-2: SVM Classifier
For training the SVM classifier, class-labeled input data

is created from the pre-trained SAEs output. For every sub-
ject’s input data to pre-trained SAEs, feature matrices are
generated at the output. For example, let us assume that
ith region has N no. of active voxels. Hence, the ith SAE
will have an output feature matrix of size Nx8. It should be
noted that in proposed architecture 145 length input feature
vector is reduced to 8 length feature vector. This implies



Table 1: Parameters used in the training of proposed Stacked Sparse Autoenocder
Hidden Layer No. l2 weight Sparsity regularizer Sparsity proportion Max epochs used

Layer 1 0.004 3 0.5 500
Layer 2 0.002 4 0.1 60
Layer 3 0.002 4 0.2 100
Layer 4 0.002 4 0.1 30

that the proposed architecture is learning informative fea-
ture vector corresponding to each voxel using the stacked
autoencoder, instead of averaging over all voxels’ time series
that may dilute the variability within a region. In order to
convert this Nx8 matrix to a vector of features for each sub-
ject and for each region, we compute the mean and standard
deviation of every feature. This provides us a feature vector
of length 16 for every region on every subject’s data (Re-
fer to Figure-3 for better clarity). In sum, corresponding to
116 regions, the proposed method provides a feature vector
of length 16x116=1856 for every subject’s data. This data
is applied to a binary SVM classifier as class-labeled data
during the training phase. This complete pipeline is shown
in Figures 3 and 4. Radial basis function (RBF) was chosen
as the Kernel type for training the SVM classifier.

5. RESULTS
In this section, we present experimental results. The model

has been trained on a K40 GPU accelerator and CPU with
model name: Intel(R) Xeon(R) CPU E5-2670 version 2 @
2.5GHz with 10 cores having cache size 25600 KB with
100GB RAM.

The classifier’s performance has been computed in terms
of True Positive Rate (TPR) (2), False Discovery Rate (FDR)
(3), Accuracy (4) and F-score (5) defined as below:

TPR =
TP

TP + FN
(2)

FDR =
FP

TP + FP
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

TPR =
2TP

2TP + FP + FN
(5)

where TP denotes true positives (no. of Schizophrenia clas-
sified as Schizophrenia), FN denotes false negatives (no. of
Schizophrenia wrongly classified as normal), TN denotes
true negatives (no. of normal subjects classified as nor-
mal), and FP denotes false positives (no. of normal subjects
wrongly classified as Schizophrenia). In medical domain,
both FN and FP are critical and should be as low as pos-
sible. Or, in other words, we should have high values for
TPR, accuracy, and F-score, while FDR should be low.

Table-2 shows classification results with 10 fold cross- val-
idation using the proposed method on the Cobre dataset.
Results have also been tabulated using the proposed algo-
rithm with SVM at the output of hidden layer vs softmax
decision layer at the output of the hidden layer. From this
table, it is observed that the proposed architecture provides
92% accuracy compared to 86.5% accuracy with single au-
toencoder.

In Table-3, accuracy results are presented on Cobre dataset
as reported in the literature. From these results, it is noted
that the proposed architecture has better accuracy com-
pared to the existing methods. Table-2 presents averaged
accuracy over all 10 folds, while Table-4 and Table-5 present
accuracy results with the proposed method on each fold
with SVM and softmax, respectively. It is observed that
the proposed architecture achieves a maximum of 95% and
93.33% accuracy in one fold with SVM and Softmax, respec-
tively that is much higher than existing methods tabulated
in Table-3. The mimimum of accuracy over all individual
folds with SVM, i.e., 90% is also higher than the maximum
accuracy of 85.8% as achieved in the literature.

The better performance observed with the proposed method-
ology may be owing to the following reasons:

• Noisy or inactive gray matter voxels have been fil-
tered out from each brain region before feeding data
to SAEs.

• Instead of working with the mean time series and/or
the temporal mean of the time series of a voxel, full
145 length time series of each of the active voxels has
been considered. Hence, no information loss of data
has happened, while the data is applied as input to the
proposed architecture. Thus, variability within data of
active voxels of a region is not lost with the proposed
architecture.

• Features have been learned for every brain region via
unsupervised training of 4-hidden layer SAEs on each
region capturing the regional characteristics and con-
sidering all active gray matter voxels’ data as input
to each SAE. Later, statistical features have been cap-
tured from the regional voxels’ feature vectors on each
subject to better characterize the regional features that
are then applied to train an SVM classifier.

6. CONCLUSION
In this paper, Stacked AutoEncoder (SAE) based two-

stage architecture has been proposed for classification of
normal versus Schizophrenia subjects from the functional
MRI data of publicly available 1000 Functional Connectomes
Project fMRI database. The proposed architecture works di-
rectly on active voxels’ time series without converting them
into region-wise mean time series. The proposed methodol-
ogy provides a very good 10-fold cross-validation accuracy
of 92% that is better than the existing methods used on the
same dataset.
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Figure 3: Proposed Two Stage Architecture

Table 2: Test results with 10 fold cross validation
Algorithm TPR (%) FDR (%) Accuracy (%) F-score (%)

Proposed algorithm (with multiple AEs and SVM) 88.67 4.83 92 92.27
Multiple AEs with Softmax 83.67 10.49 86.5 86.65

Figure 4: Proposed Two Stage Architecture

Table 3: Classification accuracy results on Cobre
Dataset as reported in the literature

Sr.No. References Accuracy(%)

1 Proposed (with 10-fold cross
validation)

92

2 Kim et al. (2016) [12] 85.8

3 Anderson and Cohen (2013) [1] 65

4 Cheng et al. (2015) [4] 80

5 Chyzhyk et al. (2015) [5] 90

6 Hsieh et al. (2014) [9] 71.6

7 Savio and Grana (2015) [21] 80

Table 4: Proposed algorithm accuracy (with SVM)
on each of the individual 10 folds

Fold No. Accuracy (%)

1 95
2 93.33
3 90
4 91.67
5 93.33
6 91.67
7 90
8 91
9 90
10 93.33

Table 5: Test accuracy using “Multiple AEs with
Softmax” on each of the individual 10 folds

Fold No. Accuracy (%)

1 91.67
2 81.67
3 85
4 93.33
5 86.67
6 91.67
7 80
8 78.33
9 93.33
10 83.33
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